
ECE DEPARTMENT, NCERC PAMPADY Page 1

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

COURSE MATERIALS

ECL 333:DIGITAL SIGNAL PROCESSING LABORATORY

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically

competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to

imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated

research scientists and intellectual leaders of the country who can spread the beams of light and

happiness among the poor and the underprivileged.

ECE DEPARTMENT, NCERC PAMPADY Page 2

ABOUT DEPARTMENT

 Established in: 2002

 Course offered : B.Tech in Electronics and Communication Engineering

M.Tech in VLSI

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Providing Universal Communicative Electronics Engineers with corporate and social relevance

towards sustainable developments through quality education.

DEPARTMENT MISSION

1) Imparting Quality education by providing excellent teaching, learning environment.

2) Transforming and adopting students in this knowledgeable era, where the electronic

gadgets (things) are getting obsolete in short span.

3) To initiate multi-disciplinary activities to students at earliest and apply in their respective

fields of interest later.

4) Promoting leading edge Research & Development through collaboration with academia

& industry.

PROGRAMME EDUCATIONAL OBJECTIVES

PEOI. To prepare students to excel in postgraduate programmes or to succeed in industry /

technical profession through global, rigorous education and prepare the students to practice and

innovate recent fields in the specified program/ industry environment.

PEO2. To provide students with a solid foundation in mathematical, Scientific and engineering

fundamentals required to solve engineering problems and to have strong practical knowledge

required to design and test the system.

PEO3. To train students with good scientific and engineering breadth so as to comprehend,

analyze, design, and create novel products and solutions for the real life problems.

ECE DEPARTMENT, NCERC PAMPADY Page 3

PEO4. To provide student with an academic environment aware of excellence, effective

communication skills, leadership, multidisciplinary approach, written ethical codes and the life-

long learning needed for a successful professional career.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex

engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs

with appropriate consideration for the public health and safety, and the cultural,

societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations,

and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary

environments.

ECE DEPARTMENT, NCERC PAMPADY Page 4

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for

Real-time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high

quality

System Software Tools and Efficient Web Design Models with a focus on performance

optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating

hardware/software

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create

innovative career path and for the socially relevant issues.

.

Preamble:

•
The following experiments are designed to make the student do real time DSP

computing.

•
boards) will be used for realization.

Dedicated DSP hardware (such as TI or Analog Devices development/evaluation

Prerequisites:

• ECT 303 Digital Signal Processing

• EST 102 Programming in C

Course Outcomes: The student will be able to

Mapping of Course Outcomes with Program Outcomes

ELECTRONICS & COMMUNICATION ENGINEERING

ECL333 DIGITAL SIGNAL PROCESSING
LABORATORY

CATEGORY L T P CREDIT

PCC 0 0 3 2

CO 1 Simulate digital signals.

CO 2 verify the properties of DFT computationally

CO 3 Familiarize the DSP hardware and interface with computer.

CO 4 Implement LTI systems with linear convolution.

CO 5 Implement FFT and IFFT and use it on real time signals.

CO 6 Implement FIR low pass filter.

CO 7 Implement real time LTI systems with block convolution and FFT.

 PO

1

PO

2

PO

3

PO

4

PO

5

PO

6

PO

7

PO

8

PO

9

PO1

0

PO1

1

PO1

2

CO1 3 3 1 2 3 0 0 0 3 0 0 1

CO2 3 3 1 2 3 0 0 0 3 0 0 1

CO3 3 3 3 2 3 0 0 0 3 1 0 1

CO4 3 3 1 2 3 0 0 0 3 0 0 1

CO5 3 3 1 1 3 0 0 0 0 0 0 1

CO6 3 3 1 1 3 0 0 0 0 0 0 1

CO7 3 3 1 3 3 0 0 0 3 3 0 0

Continuous Internal Evaluation Pattern:

Each experiment will be evaluated out of 50 credits continuously as

End Semester Examination Pattern: The following guidelines should be followed

regarding award of marks

Course Level Assessment Questions

CO1-Simulation of Signals

1. Write a Python/MATLAB/SCILAB function to generate a rectangular

pulse.

2. Write a Python/MATLAB/SCILAB function to generate a triangular

pulse.

CO2-Verfication of the Properties of DFT

ELECTRONICS & COMMUNICATION ENGINEERING

Assessment Pattern

Mark Distribution:

Total Mark CIE ESE

150 50 100

Attribute Mark

Attendance 15

Continuous assessment 30

Internal Test (Immediately before 30

the second series test)

Attribute Mark

Preliminary work 15

Implementing the work/

Conducting the experiment

10

Performance, result and inference 25

(usage of equipments and trouble

shooting)

Viva voce 20

Record 5

1. Write a Python/MATLAB/SCILAB function to compute the N -point DFT

ELECTRONICS & COMMUNICATION ENGINEERING

matrix and plot its real and imaginary parts.

2. Write a Python/MATLAB/SCILAB function to verify Parseval’s theorem

for N = 1024.

CO3-Familarization of DSP Hardware

1. Write a C function to control the output LEDs with input switches.

2. Write a C function to connect the analog input port to the output port and test with

a microphone.

CO4-LTI System with Linear Convolution

1. Write a function to compute the linear convolution and download to the hardware

target and test with some signals.

CO5-FFT Computation

1. Write and download a function to compute N point FFT to the DSP hardware

target and test it on real time signal.

2. Write a C function to compute IFFT with FFT function and test in on DSP

hardware.

CO6-Implementation of FIR Filter

1. Design and implement an FIR low pass filter for a cut off frequency of 0.1π and

test it with an AF signal generator.

CO7-LTI Systems by Block Convolution

1. Implement an overlap add block convolution for speech signals on DSP

target.

N −1 Σ
1 2 N

1 2

ELECTRONICS & COMMUNICATION ENGINEERING

List of Experiments

(All experiments are mandatory.)

Experiment 1. Simulation of Signals Simulate the following signals using Python/

Scilab/MATLAB.

1. Unit impulse signal

2. Unit pulse signal

3. Unit ramp signal

4. Bipolar pulse

5. Triangular signal

Experiment 2. Verification of the Properties of DFT

• Generate and appreciate a DFT matrix.

1. Write a function that returns the N point DFT matrix VN for a given

N.

2. Plot its real and imaginary parts of VN as images using matshow or

imshow commands (in Python) for N = 16, N = 64 and N = 1024

3. Compute the DFTs of 16 point, 64 point and 1024 point random

sequences using the above matrices.

4. Observe the time of computations for N = 2
γ
 for 2 γ 18≤(Yo≤u may use

the time module in Python).

5. Use some iterations to plot the times of computation against γ. Plot

and understand this curve. Plot the times of computation for the fft

function over this curve and appreciate the computational saving

with FFT.

• Circular Convolution.

1. Write a python function circcon.py that returns the circular con-

voluton of an N1 point sequence and an N2 point sequence given at

the input. The easiest way is to convert a linear convolution into

circular convolution with N = max(N1, N2).

• Parseval’s Theorem

For the complex random sequences x1[n] and x2[n],

Σ
x [n]x∗[n] =

 1

N −1

X [k]X∗[k]

 k=0 n=0

ELECTRONICS & COMMUNICATION ENGINEERING

1. Generate two random complex sequences of say 5000 values.

2. Prove the theorem for these signals.

Experiment 3. Familarization of DSP Hardware

1. Familiarization of the code composer studio (in the case of TI hard- ware)

or Visual DSP (in the case of Analog Devices hardware) or any equivalent

cross compiler for DSP programming.

2. Familiarization of the analog and digital input and output ports of the DSP

board.

3. Generation and cross compilation and execution of the C code to con- nect

the input digital switches to the output LEDs.

4. Generation and cross compilation and execution of the C code to con- nect

the input analog port to the output. Connect a microphone, speak into it

and observe the output electrical signal on a DSO and store it.

5. Document the work.

Experiment 4. Linear convolution

1. Write a C function for the linear convolution of two arrays.

2. The arrays may be kept in different files and downloaded to the DSP

hardware.

3. Store the result as a file and observe the output.

4. Document the work.

Experiment 5. FFT of signals

1. Write a C function for N - point FFT.

2. Connect a precision signal generator and apply 1 mV , 1 kHz sinusoid at

the analog port.

3. Apply the FFT on the input signal with appropriate window size and

observe the result.

4. Connect microphone to the analog port and read in real time speech.

5. Observe and store the FFT values.

6. Document the work.

ELECTRONICS & COMMUNICATION ENGINEERING

Experiment 6. IFFT with FFT

1. Use the FFT function in the previous experiment to compute the IFFT of

the input signal.

2. Apply IFFT on the stored FFT values from the previous experiments and

observe the reconstruction.

3. Document the work.

Experiment 7. FIR low pass filter

1.
 Use Python/scilab to implement the FIR filter response h[n] =

sin(ω
cn)

 πn

for a filter size N = 50, ωc = 0.1π and ωc = 0.3π .

2. Realize the hamming(wH [n]) and kaiser (wK[n]) windows.

3. Compute h[n]w[n] in both cases and store as file.

4. Observe the low pass response in the simulator.

5. Download the filter on to the DSP target board and test with 1 mV

sinusoid from a signal generator connected to the analog port.

6. Test the operation of the filters with speech signals.

7. Document the work.

Experiment 8. Overlap Save Block Convolution

1. Use the file of filter coefficients From the previos experiment.

2. Realize the system shown below for the input speech signal x[n].

3. Segment the signal values into blocks of length N = 2000. Pad the last

Experiment 9. Overlap Add Block Convolution

1. Use the file of filter coefficients from the previous experiment.

2. Realize the system shown in the previous experiment for the input speech

signal x[n].

3. Segment the signal values into blocks of length N = 2000. Pad the last

block with zeros, if necessary.

4. Implement the overlap add block convolution method

5. Document the work.

Schedule of Experiments: Every experiment should be completed in three hours.

Textbooks

1. Vinay K. Ingle, John G. Proakis, “Digital Signal Processing Using

MATLAB.”

2. Allen B. Downey, “Think DSP: Digital Signal Processing using Python.”

3. Rulph Chassaing, “DSP Applications Using C and the TMS320C6x DSK

(Topics in Digital Signal Processing)”

ELECTRONICS & COMMUNICATION ENGINEERING

block with zeros, if necessary.

4. Implement the overlap save block convolution method

5. Document the work.

TABLE OF CONTENTS

EXP.No. Topic Page No.

0 FAMILIARISATION WITH MATLAB 2

1
GENERATION OF WAVEFORMS

(CONTINUOUS AND DISCRETE)

5

2

LINEAR CONVOLUTION, CIRCULAR

CONVOLUTION AND LINEAR

CONVOLUTION USING CIRCULAR

CONVOLUTION.

9

3
TO FIND THE DFT AND IDFT FOR THE

GIVEN INPUT SEQUENCE.

15

4
TO FIND FFT AND IFFT FOR THE GIVEN

INPUT SEQUENCE.

18

5
GENERATION OF AM, FM & PWM

WAVEFORMS AND THEIR SPECTRUM.

21

6
FIR FILTER (LOW-PASS, HIGH-PASS AND

BAND-PASS)DESIGN (WINDOW METHOD).

26

7
IIR FILTER (LOW-PASS, HIGH-PASS AND

BAND-PASS)DESIGN (BUTTERWORTH

AND CHEBYCHEV).

30

Experiments on Digital Signal Processor/

DSP kits

43

8
GENERATION OF SINE WAVE AND

STANDARD TEST SIGNALS.

47

9 CONVOLUTION : LINEAR AND CIRCULAR 54

10

REAL TIME FIR FILTER

IMPLEMENTATION (LOW-PASS, HIGH-

PASS AND BAND-PASS) BY INPUTTING A

SIGNAL FROM THE SIGNAL GENERATOR

61

11

REAL TIME IIR FILTER

IMPLEMENTATION (LOW-PASS, HIGH-

PASS AND BAND-PASS) BY INPUTTING A

SIGNAL FROM THE SIGNAL GENERATOR

64

12
SAMPLING OF ANALOG SIGNAL AND

STUDY OF ALIASING.

67

2

FAMILIARISATION WITH MATLAB

Aim: To familiarize with MATLAB software, general functions and signal processing toolbox

functions.

The name MATLAB stands for MATrix LABoratory produced by Math

works Inc., USA. It is a matrix-based powerful software package for scientific and

engineering computation and visualization. Complex numerical problems can be solved in a

fraction of the time that required with other high level languages. It provides an interactive

environment with hundreds of built -in –functions for technical computation, graphics and

animation. In addition to built-in-functions, user can create his own functions. MATLAB

offers several optional toolboxes, such as signal processing, control systems, neural networks

etc. It is command driven software and has online help facility.

MATLAB has three basic windows normally; command window, graphics

window and edit window.

Command window is characterized by the prompt ‘>>’.All commands and the ready to run

program filename can be typed here. Graphic window gives the display of the figures as the

result of the program. Edit window is to create program files with an extension .m.

Some important commands in MATLAB

Help List topics on which help is available

Help command name Provides help on the topic selected

Demo runs the demo program

Who Lists variables currently in the workspace

Whos Lists variables currently in the workspace with their size

Clear clears the workspace, all the variables are removed

Clear x,y,z Clears only variables x,y,z

Quit Quits MATLAB

3

Some of the frequently used built-in-functions in Signal Processing Toolbox

filter(b.a.x) Syntax of this function is Y = filter(b.a.x) It filters the data in

vector x with the filter described by vectors a and b to create the

filtered data y.

fft (x) It is the DFT of vector x

ifft (x) It is the DFT of vector x

conv (a,b) Syntax of this function is C = conv (a,b) It convolves vectors a

and b. The resulting vector is of Length, Length (a) + Length (b)-

1

deconv(b,a) Syntax of this function is [q,r] = deconv(b,a) It deconvolves vector

q and the remainder in vector r such that

b = conv(a,q)+r

butter(N,Wn) designs an Nth order lowpass digital

Butterworth filter and returns the filter coefficients in length N+1

vectors B (numerator) and a (denominator). The coefficients are

listed in descending powers of z. The cutoff frequency Wn must

be 0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate.

buttord(Wp, Ws, Rp, Rs) returns the order N of the lowest order digital Butterworth filter

that loses no more than Rp dB in the passband and has at least

Rs dB of attenuation in the stopband. Wp and Ws are the

passband and stopband edge frequencies, Normalized from 0 to 1,

(where 1 corresponds to pi rad/sec)

Cheby1(N,R,Wn) designs an Nth order lowpass digital Chebyshev filter with R

decibels of peak-to-peak ripple in the passband. CHEBY1 returns

the filter coefficients in length N+1 vectors B (numerator) and A

(denominator). The cutoff frequency Wn must be 0.0 < Wn < 1.0,

with 1.0 corresponding to half the sample rate.

Cheby1(N,R,Wn,'high') designs a highpass filter.

Cheb1ord(Wp, Ws, Rp, Rs) returns the order N of the lowest order digital Chebyshev Type I

filter that loses no more than Rp dB in the passband and has at

least Rs dB of attenuation in the stopband. Wp and Ws are the

passband and stopband edge frequencies, normalized from 0 to 1

(where 1 corresponds to pi radians/sample)

cheby2(N,R,Wn) designs an Nth order lowpass digital Chebyshev filter with the

stopband ripple R decibels down andstopband edge frequency

Wn. CHEBY2 returns the filter coefficients in length N+1 vectors

B (numerator) and A . The cutoff frequency Wn must be 0.0 <

Wn < 1.0, with 1.0 corresponding to half the sample rate.

cheb2ord(Wp, Ws, Rp, Rs) returns the order N of the lowest order digital Chebyshev Type

II filter that loses no more than Rp dB in the passband and has at

4

least Rs dB of attenuation in the stopband. Wp and Ws are the

passband and stopband edge frequencies.

abs(x) It gives the absolute value of the elements of x. When x is

complex, abs(x) is the complex modulus (magnitude) of the

elements of x.

angle(H) It returns the phase angles of a matrix with complex elements in

radians.

freqz(b,a,N) Syntax of this function is [h,w] = freqz(b,a,N) returns the Npoint

frequency vector w in radians and the N-point complex frequency

response vector h of the filter b/a.

stem(y) It plots the data sequence y aa stems from the x axis terminated

with circles for the data value.

stem(x,y) It plots the data sequence y at the values specified in x.

plot(x,y) It plots vector y versus vector x. If x or y is a matrix, then the

vector is plotted versus the rows or columns of the matrix,

whichever line up.

title(‘text’) It adds text at the top of the current axis.

xlabel(‘text’) It adds text beside the x-axis on the current axis.

ylabel(‘text’) It adds text beside the y-axis on the current axis

5

GENERATION OF WAVEFORMS

Experiment No: - 01

AIM: - To write a MATLAB program to common continues and discrete time signals

PROCEDURE:-
Open MATLAB

Open new M-file

Type the program

Save in current directory

Compile and Run the program

for the output see command window\ Figure window

ALGORITHM:-
Get the amplitude and frequency of the signal

Use „sin‟, ‟cos ,‟square‟ matlab built in functions

Using „plot‟ function plot the signal

Using „stem‟ function plot the signal

MATLAB CODE:-

Continous Time Signals

clc;

clear all;

close all;

t=0:0.001:1;
f=input('Enter the value of frequency');

a=input('Enter the value of amplitude');
subplot(3,3,1);

y=a*sin(2*pi*f*t); %sine wave
plot(t,y,);

xlabel('time');

ylabel('amplitude');

title('sine wave')

grid on;

subplot(3,3,2);

z=a*cos(2*pi*f*t); %cos wave

plot(t,z);

xlabel('time');

ylabel('amplitude');

title('cosine wave')

grid on;

subplot(3,3,3);

s=a*square(2*pi*f*t); %square wave
plot(t,s);

xlabel('time');
ylabel('amplitude');

6

title('square wave')

grid on;

subplot(3,3,4);

plot(t,t); %ramp signal

xlabel('time');

ylabel('amplitude');

title('ramp wave')

grid on;

subplot(3,3,5);

plot(t,a,'r'); %unit step wave

xlabel('time');

ylabel('amplitude');

title('unit step wave')

grid on;
x=a*exp(-t);

subplot(3,3,6);

plot(t,x); %exponential wave

xlabel('Time');

ylabel('Amplitude');

title('Exponentially Decaying Signal');

grid on;

Discrete Time Signal

clc;

clear all;

close all;

n=0:1:50;
f=input('Enter the value of frequency');

a=input('Enter the value of amplitude');

N=input('Enter the length of unit step');

subplot(3,3,1);

y=a*sin(2*pi*f*n);

stem(n,y,'r');

xlabel('time');

ylabel('amplitude');

title('sine wave')

grid on;

subplot(3,3,2);

z=a*cos(2*pi*f*n);

stem(n,z);

xlabel('time');

ylabel('amplitude');

title('cosine wave')

grid on;

subplot(3,3,3);

s=a*square(2*pi*f*n);

stem(n,s);

xlabel('time');

ylabel('amplitude');

title('square wave')

grid on;

subplot(3,3,4);

stem(n,n);

7

xlabel('time');

ylabel('amplitude');

title('ramp wave')

grid on;

x=0:N-1;

d=ones(1,N);

subplot(3,3,5);

stem(x,d,'r');

xlabel('time');

ylabel('amplitude');

title('unit step wave')

grid on;

x=a*exp(-t);

subplot(3,3,6);

stem(t,x);
xlabel('Time');

ylabel('Amplitude');

title('Exponentially Decaying Signal');

grid on;

FIGURE:-

Continuous Time Signal

Discrete Time Signal

8

SAMPLE INPUT:-

Continuous Time Signal

Enter the value of frequency2
Enter the value of amplitude1

Discrete Time Signal

Enter the value of frequency 0.03

Enter the value of amplitude 1

Enter the length of unit step 9

RESULTS: - Thus the generation of continuous and discrete time signals using matlab was

verified.

9

GENERATION OF LINEAR CONVOLUTION, CIRCULAR CONVOLUTION, LINEAR

CONVOLUTION USING CIRCULAR CONVOLUTION

Experiment No: - 02

AIM: - To write a MATLAB program to compute linear convolution, Circular Convolution and

linear convolution using circular convolution of two given sequences

PROCEDURE:-

Open MATLAB

Open new M-file

Type the program

Save in current directory
Compile and Run the program

For the output see command window\ Figure window

a) Linear convolution using function

ALGORITHM:-

Read the input sequence x[n] ,and plot
Read the impulse sequence h[n] , and plot

Use the matlab function „conv‟or dft or loop

Convolve the two sequence and plot the result

MATLAB CODE:-

clc;
x=input('Enter the sequence 1:');

h=input('Enter the sequence 2:');

y=conv(x,h);

subplot(3,1,1);

stem(x);

ylabel('Amplitude->');

xlabel('N');

subplot(3,1,2);

stem(h);

ylabel('Amplitude->');

xlabel('N');

subplot(3,1,3);

stem(y);

ylabel('Amplitude->');

xlabel('N');

10

b) Linear convolution using DFT

MATLAB CODE:-

clc;
n1=input('enter the length of sequence');

x=input('Enter the sequence 1:');

n2=input('enter the length of sequence');

h=input('Enter the sequence 2:');

x=[x,zeros(1,n2-1)];

h=[h,zeros(1,n1-1)];
X=fft(x);

H=fft(h);
Y=X.*H;

y=ifft(Y);

subplot(311);

stem(x);

subplot(312);

stem(h);

title('using DFT');

subplot(313);

stem(y)

c) Linear convolution without using Function

MATLAB CODE:-

close all

clear all

x=input('Enter x: ')

h=input('Enter h: ')

m=length(x);

n=length(h);

X=[x,zeros(1,n)];

H=[h,zeros(1,m)];

for i=1:n+m-1

Y(i)=0;

for j=1:m

if(i-j+1>0)

Y(i)=Y(i)+X(j)*H(i-j+1);
else

end

end

end

Y

stem(Y);
ylabel('Y[n]');

xlabel(' ---- >n');

title('Convolution of Two Signals without conv function');

11

ALGORITHM:- Circular Convolution

Read the input sequence x1[n], and plot

Read the input sequence x2[n], and plot

Use the user defined matlab function „crconc‟

convolve the two sequences and plot the result

a) Circular convolution using DFT

MATLAB CODE:-

clc;
n1=input('enter the length of sequence');

x=input('Enter the sequence 1:');

h=input('Enter the sequence 2:');

X=fft(x);

H=fft(h);

Y=X.*H;

y=ifft(Y);

subplot(311);

stem(x);

title('sequence1')

subplot(312);

stem(h);

title('sequence2');

subplot(313);

stem(y);

title('using dft');

b) Circular convolution without using Function

MATLAB CODE:-

clc;

x=input('Enter the sequence 1:');

h=input('Enter the sequence 2:');

n1=length(x);

n2=length(h);

N=max(n1,n2);

x=[x,zeros(1,N-n1)];

h=[h,zeros(1,N-n2)];

for n=0:N-1

y(n+1)=0;

for i=0:N-1

j=mod(n-i,N);

y(n+1)=y(n+1)+x(i+1)*h(j+1);

end

end

display(y)

subplot(131);

stem(x);

title('firstsequence');

subplot(132);

12

stem(h);
title('second sequence');

subplot(133);

stem(y);

title('circular convolution');

ALGORITHM:- Linear Convolution using Circular convolution

Read the input sequence x1[n], and plot

Read the input sequence x2[n], and plot

Use the user defined matlab functions

convolve the two sequences and plot the result

MATLAB CODE:-

clear all;close all;

x1=input('Enter the sequence 1: ');

x2=input('Enter the sequence 2: ');

subplot(311);

stem(x1);

title('Input sequence1');

subplot(312);

stem(x2);

title('Input sequence2');

N1=numel(x1);

N2=numel(x2);

x1=[x1 zeros(1,N2-1)];

x2=[x2 zeros(1,N1-1)];

y=cconv(x1,x2);

subplot(313);

stem(y);

title('Lin Using Circular');

FIGURE: Linear Convolution

13

SAMPLE INPUT:-

Enter the co-efficient of x(n)=[1 2 3]

Enter the co-efficient of h(n)=[1 1 1]

y= 1 3 6 5 3

FIGURE: Circular Convolution

SAMPLE INPUT:-

Enter the co-efficient of x(n)=[1 2 3]

Enter the co-efficient of h(n)=[1 1 1]

y = 6 6 6

FIGURE:

14

SAMPLE INPUT:-

Enter the co-efficient of x(n)=[1 2 3 4]

Enter the co-efficient of h(n)=[1 1 0 0]

RESULTS: - Thus the program for linear convolution, circular convolution and linear convolution

using circular convolution is written using MATLAB and verified.

15

GENERATION OF DISCRETE FOURIER TRANSFORM AND INVERSE DISCRETE FOURIER

TRANSFORM

Experiment No: - 03

AIM: - TO write a MATLAB program to find the DFT and IDFT of a sequence

PROCEDURE:-

ALGORITHM:-

Open MATLAB

Open new M-file

Type the program

Save in current directory

Compile and Run the program

For the output see command window\ Figure window

Enter the input sequence x[n]
Enter the length of sequence

Use the matlab function „fft‟ for DFT

Use the matlab function „ifft‟ for IDFT

Plot the input and output sequence

MATLAB CODE:- DFT

clc;

clear all;

close all;

N=input('Enter the value of N');

x=input('Enter the input sequence X(n):');

t=0:N-1;

subplot(2,1,1);

stem(t,x);

xlabel('TIME');

ylabel('AMPLITUDE');

title('INPUT SIGNAL');

grid on;

y=fft(x,N)

subplot(2,1,2);

stem(t,y);

xlabel('TIME');

ylabel('AMPLITUDE');

title('OUTPUT SIGNAL');

grid on;

16

MATLAB CODE:- IDFT

clc;

clear all;

close all;

N=input('Enter the value of N=');

y=input('Enter the sequence y[n]=');

t=0:N-1;

subplot(2,1,1);

stem(t,y);

xlabel('TIME');

ylabel('AMPLITUDE');

title('INPUT SIGNAL');

grid on;

x=ifft(y,N)

subplot(2,1,2);

stem(t,x);

xlabel('TIME');

ylabel('AMPLITUDE');

title('OUTPUT SIGNAL');

grid on;;

FIGURE: DFT

SAMPLE INPUT:-

Enter the value of N 4

Enter the input sequence X(n):[1 2 3 4]

y = 10.0000 -2.0000 + 2.0000i -2.0000 -2.0000 - 2.0000i

17

FIGURE: IFFT

SAMPLE INPUT:-

Enter the value of N=4

Enter the sequence y[n]=[10 -2+2i -2 -2-2i]

x =1 2 3 4

RESULTS: - Thus the program for DFT and IDFT is written using MATLAB and verified.

18

GENERATION OF FAST FOURIER TRANSFORM AND INVERSE FAST FOURIER

TRANSFORM

Experiment No: - 04

AIM: - To write a MATLAB program to find the FFT and IFFT of a sequence

PROCEDURE:-

ALGORITHM:-

Open MATLAB

Open new M-file

Type the program

Save in current directory

Compile and Run the program

For the output see command window\ Figure window

Enter the input sequence x[n]

Enter the length of sequence

Use the matlab function „fft‟ for FFT

Use the matlab function „ifft‟ for IFFT

Plot the input and output sequence

MATLAB CODE:- FFT

clc;

clear all;

close all;

N=input('Enter the value of N which is a factor of 2');

x=input('Enter the input sequence x(n):');

t=0:N-1;

subplot(2,1,1);

stem(t,x);

xlabel('TIME');

ylabel('AMPLITUDE');

title('INPUT SIGNAL');

grid on;

x=[x,zeros(1,N-length(x))];

for k=1:N

y(k)=0;

for n= 1:N

y(k)=y(k) + x(n)*exp(-1i*2*pi*(k-1)*(n-1))/N);

subplot(2,1,2);

stem(t,y);

xlabel('TIME');

ylabel('AMPLITUDE');

title('OUTPUT SIGNAL');

grid on;

19

MATLAB CODE:- IFFT

clc;

clear all;

close all;

N=input('Enter the value of N=');

y=input('Enter the sequence y[n]=');

t=0:N-1;

subplot(2,1,1);

stem(t,y);

xlabel('TIME');

ylabel('AMPLITUDE');

title('INPUT SIGNAL');

grid on;

y=[y,zeros(1,N-length(y))];

for k=1:N

x(k)=0;

for n= 1:N

x(k)=x(k) + y(n)*exp(1i*2*pi*(k-1)*(n-1))/N);

subplot(2,1,2);

stem(t,x);

xlabel('TIME');

ylabel('AMPLITUDE');

title('OUTPUT SIGNAL');

grid on;;

FIGURE: FFT

20

SAMPLE INPUT:-

Enter the value of N 4

Enter the input sequence x(n):[1 2 3 4]

y = 10.0000 -2.0000 + 2.0000i -2.0000 -2.0000 - 2.0000i

FIGURE: IFFT

SAMPLE INPUT:-

Enter the value of N=4

Enter the sequence y[n]=[10 -2+2i -2 -2-2i]

x =1 2 3 4

RESULTS: - Thus the program for FFT and IFFT is written using MATLAB and verified.

21

GENERATION OF AM, FM AND PWM WAVE

Experiment No: - 05

AIM: - To write MATLAB program to generating AM, FM and PWM wave

PROCEDURE:-
Open MATLAB

Open new M-file

Type the program

Save in current directory

Compile and Run the program

for the output see command window\ Figure window

ALGORITHM:-
Get the amplitude and frequency of the signal

Use „sin‟ matlab built in functions

Using „plot‟ function plot the signal

(a) AM WAVE

MATLAB CODE:-

clc;

clear all;

close all;

t=0:0.001:1;
set(0,'defaultlinelinewidth',2);

A=5;

fm=input('Message frequency=');

fc=input('Carrier frequency=');

mi=input('Modulation Index=');

Sm=A*sin(2*pi*fm*t);

subplot(3,1,1);

plot(t,Sm);
xlabel('Time');

ylabel('Amplitude');

title('Message Signal');

grid on;

Sc=A*sin(2*pi*fc*t);
subplot(3,1,2);

plot(t,Sc);
xlabel('Time');

ylabel('Amplitude');

title('Carrier Signal');

grid on;

Sfm=(A+mi*Sm).*sin(2*pi*fc*t);
subplot(3,1,3);

plot(t,Sfm);

xlabel('Time');

22

ylabel('Amplitude');

title('AM Signal');

grid on;

FIGURE:-

SAMPLE INPUT:-

Enter the value of message frequency 10

Enter the value of carrier frequency 100

Enter the value of modulation index 0.5

(b) FM WAVE

MATLAB CODE:-

clc;

clear all;

close all;

fm=input('Message Frequency=');

fc=input('Carrier Frequency=');

mi=input('Modulation Index=');

t=0:0.0001:0.1;

m=sin(2*pi*fm*t);

subplot(3,1,1);

plot(t,m);
xlabel('Time');

ylabel('Amplitude');

title('Message Signal');

grid on;

c=sin(2*pi*fc*t);

subplot(3,1,2);

23

plot(t,c);
xlabel('Time');

ylabel('Amplitude');

title('Carrier Signal');

grid on;

y=sin(2*pi*fc*t+(mi.*sin(2*pi*fm*t)));

subplot(3,1,3);

plot(t,y);
xlabel('Time');

ylabel('Amplitude');

title('FM Signal');

grid on;

FIGURE:-

SAMPLE INPUT:-

Enter the value of message frequency 25

Enter the value of carrier frequency 400

Enter the value of modulation index 10

(c) PWM WAVE

MATLAB CODE:-

clc;

clear all;

close all;

F2=input('Message frequency=');

F1=input('Carrier Sawtooth frequency=');

A=5;

t=0:0.001:1;

c=A.*sawtooth(2*pi*F1*t);

24

subplot(3,1,1);

plot(t,c);

xlabel('time');

ylabel('Amplitude');

title('Carrier sawtooth wave');

grid on;

m=0.75*A.*sin(2*pi*F2*t);

subplot(3,1,2);

plot(t,m);

xlabel('Time');

ylabel('Amplitude');

title('Message Signal');

grid on;

n=length(c);

for i=1:n

if (m(i)>=c(i))

pwm(i)=1;

else

pwm(i)=0;

end

end

subplot(3,1,3);

plot(t,pwm);
xlabel('Time');

ylabel('Amplitude');

title('plot of PWM');

axis([0 1 0 2]);

grid on;

FIGURE:-

25

SAMPLE INPUT:-

Message frequency=1

Carrier Saw tooth frequency=10

RESULTS: - Thus the program for FM, AM and PWM is written using MATLAB and verified.

26

GENERATION OF FIR FILTER USING WINDOWS. (RECTANGULAR, HANNING AND

HAMMING WINDOW)

Experiment No: - 06

AIM: - To write a MATLAB program to plot magnitude response and phase response of digital FIR

filter using windows.

PROCEDURE:-

Open MATLAB

Open new M-file

Type the program

Save in current directory

Compile and Run the program

For the output see command window\ Figure window

ALGORITHM:-

MATLAB CODE:-

Get the order of the filter

Get the cut off frequency

Use „fir1 ‟& corresponding window functions to compute the filter

coefficient

Draw the magnitude and phase response

clc;

clear all;

close all;

rp=input('enter passband ripple');

rs=input('enter the stopband ripple');

fp=input('enter passband freq');

fs=input('enter stopband freq');

f=input('enter sampling freq ');

wp=2*fp/f;

ws=2*fs/f;

num=-20*log10(sqrt(rp*rs))-13;

dem=14.6*(fs-fp)/f;

n=ceil(num/dem);

n1=n+1;

if(rem(n,2)~=0)

n1=n;

n=n-1;

end

c=input('enter your choice of window function 1. rectangular 2.hanning

3.hamming: \n ');

if(c==1)

y=rectwin(n1);

disp('Rectangular window filter response');

end

if(c==2)

y=hanning(n1);

disp('hanning window filter response');

end

if(c==3)

27

y=hamming(n1);

disp('hamming window filter response');

end

%LPF

b=fir1(n,wp,y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,1);plot(o/pi,m);

title('LPF');

ylabel('Gain in dB-->');

xlabel('(a) Normalized frequency-->');

%HPF

b=fir1(n,wp,'high',y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,2);plot(o/pi,m);

title('HPF');

ylabel('Gain in dB-->');

xlabel('(b) Normalized frequency-->');

%BPF

wn=[wp,ws];

b=fir1(n,wn,y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,3);plot(o/pi,m);

title('BPF');

ylabel('Gain in dB-->');

xlabel('(b) Normalized frequency-->');

%BSF

wn=[wp,ws];

b=fir1(n,wn,'stop',y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,4);plot(o/pi,m);

title('BSF');

ylabel('Gain in dB-->');

xlabel('(b) Normalized frequency-->');

28

FIGURES:-

1) USING RECTANGULAR WINDOW

2) USING HANNING WINDOW

29

3) USING HAMMING WINDOW

SAMPLE INPUTS:-

Enter the value of pass band ripple:0.05

Enter the value of stop band ripple:0.04

Enter the value of pass band frequency:1500

Enter the value of stop band frequency:2000

Enter the value of sampling frequency:9000

RESULTS: - Thus the magnitude response of FIR filter using all types of windows was

verified.

30

IIR FILTER DESIGN

Experiment No: - 07

AIM: - To write a MATLAB program to plot magnitude response and phase response of digital

Butter worth and Chebychev filters.

PROCEDURE:-

Open MATLAB

Open new M-file

Type the program

Save in current directory

Compile and Run the program

For the output see command window\ Figure window

ALGORITHM:- BUTTERWORTH FILTER

Get the passband and stopband ripples

Get the passband and stopband edge frequencies

Calculate the order of the filter using „ buttord ‟ function

Find the filter coefficients, using „butter‟ function

Draw the magnitude and phase response

(i) BUTTERWORTH LOW PASS FILTER

MATLAB CODE:-

clc;

clear all;

close all;

rp=input('enter the passband attenuation:');

rs=input('enter the stop band attenuation:');

wp=input('enter the pass band frequency:');

ws=input('enter the stop band frequency:');

[N,wn]=buttord(wp/pi,ws/pi,rp,rs);

[b,a]=butter(N,wn);

freqz(b,a)

31

FIGURE:-

SAMPLE INPUT:-

Enter the passband attenuation:0.4

Enter the stop band attenuation:30

Enter the pass band frequency:0.2*pi

Enter the stop band frequency:0.4*pi

(ii) BUTTERWORTH HIGH PASS FILTER

MATLAB CODE:-

clc;

clear all;

close all;

rp=input ('Enter the pass band attenuation:');

rs=input ('Enter the stop band attenuation:');

wp=input ('Enter the pass band frequency:');

ws=input ('Enter the stop band frequency:');

[N,wn]=buttord(wp/pi,ws/pi,rp,rs);

[b,a]=butter(N,wn,'high');

freqz(b,a);

32

FIGURE:-

SAMPLE INPUT:-

Enter the pass band attenuation:0.4

Enter the stop band attenuation:30

Enter the pass band frequency:0.6*pi

Enter the stop band frequency:0.2*pi

(iii) BUTTERWORTH BAND PASS FILTER

MATLAB CODE:-

clc;

clear all;

close all;

rp=input('enter the passband attenuation:');

rs=input('enter the stop band attenuation:');

wp=input('enter the pass band frequency:');

ws=input('enter the stop band frequency:');

[N,wn]=buttord(wp/pi,ws/pi,rp,rs);

[b,a]=butter(N,wn);

freqz(b,a);

33

FIGURE:-

SAMPLE INPUT:-

Enter the passband attenuation:0.2

Enter the stop band attenuation:20

Enter the pass band frequency:[0.2*pi,0.4*pi]

Enter the stop band frequency: [0.1*pi, 0.5*pi]

(iv) BUTTERWORTH BAND STOP FILTER

MATLAB CODE:-

clc;

clear all;

close all;

rp=input('enter the passband attenuation:');

rs=input('enter the stop band attenuation:');

wp=input('enter the pass band frequency:');

ws=input('enter the stop band frequency:');

[N,wn]=buttord(wp/pi,ws/pi,rp,rs);

[b,a]=butter(N,wn,‟stop‟);

freqz(b,a);

34

FIGURE:-

SAMPLE INPUT:-

Enter the passband attenuation:0.2

Enter the stop band attenuation:20

Enter the pass band frequency:[0.1*pi,0.5*pi]

Enter the stop band frequency:[0.2*pi,0.4*pi]

ALGORITHM:- CHEBYSHEV FILTERS

Get the passband and stopband ripples

Get the passband and stopband edge frequencies

Calculate the order of the filter using „ cheb1ord ‟ function

Find the filter coefficients, using „cheby1‟ function

Draw the magnitude and phase response

(i) CHEBYSHEV(TYPE-1) LOW PASS FILTER

MATLAB CODE:-

clc;

clear all;

close all;

rp=input ('Enter the pass band attenuation:');

rs=input ('Enter the stop band attenuation:');

wp=input ('Enter the pass band frequency:');

ws=input ('Enter the stop band frequency:');

[N,wn]=cheb1ord(wp/pi,ws/pi,rp,rs);

[b,a]=cheby1(N,rp,wn);

freqz(b,a);

35

FIGURE:-

SAMPLE INPUT:-

Enter the pass band attenuation:20

Enter the stop band attenuation:50

Enter the pass band frequency:0.3*pi

Enter the stop band frequency:0.4*pi

(ii) CHEBYSHEV(TYPE-1)HIGH PASS FILTER

MATLAB CODE:-

clc;

clear all;

close all;

rp=input ('Enter the pass band attenuation:');

rs=input ('Enter the stop band attenuation:');

wp=input ('Enter the pass band frequency:');

ws=input ('Enter the stop band frequency:');

[N,wn]=cheb1ord(wp/pi,ws/pi,rp,rs);

[b,a]=cheby1(N,rp,wn,'high');

freqz(b,a);

36

FIGURE:-

SAMPLE INPUT:-

Enter the pass band attenuation:20

Enter the stop band attenuation:50

Enter the pass band frequency:0.4*pi

Enter the stop band frequency:0.3*pi

(iii) CHEBYSHEV(TYPE-1) BAND PASS FILTER

MATLAB CODE:-

clc;

clear all;

close all;

rp=input ('Enter the pass band attenuation:');

rs=input ('Enter the stop band attenuation:');

wp=input ('Enter the pass band frequency:');

ws=input ('Enter the stop band frequency:');

[N,wn]=cheb1ord(wp/pi,ws/pi,rp,rs);

[b,a]=cheby1(N,rp,wn);

freqz(b,a);

37

FIGURE:-

SAMPLE INPUT:-

Enter the pass band attenuation:20

Enter the stop band attenuation:98

Enter the pass band frequency:[0.3*pi,0.5*pi]
Enter the stop band frequency:[0.1*pi,0.8*pi]

(iv) CHEBYSHEV(TYPE-1)BAND STOP FILTER

MATLAB CODE:-

clc;

clear all;

close all;

rp=input('Enter the pass band attenuation:');

rs=input('Enter the stop band attenuation:');

wp=input('Enter the pass band frequency:');

ws=input('Enter the stop band frequency:');

[N,wn]=cheb1ord(wp/pi,ws/pi,rp,rs);

[b,a]=cheby1(N,rp,wn,'stop');

freqz(b,a);

38

FIGURE:-

SAMPLE INPUT:-

Enter the pass band attenuation:20
Enter the stop band attenuation:98

Enter the pass band frequency:[0.1*pi,0.8*pi]

Enter the stop band frequency:[0.3*pi,0.5*pi]

ALGORITHM:- CHEBYSHEV TYPE 2 FILTERS

Get the passband and stopband ripples

Get the passband and stopband edge frequencies

Calculate the order of the filter using „ cheb2ord ‟ function

Find the filter coefficients, using „cheby2‟ function

Draw the magnitude and phase response

(i) CHEBYSHEV(TYPE-2) LOW PASS FILTER

MATLAB CODE:-

clc;

clear all;

close all;

rp=input ('Enter the pass band attenuation:');

rs=input ('Enter the stop band attenuation:');

wp=input ('Enter the pass band frequency:');

ws=input ('Enter the stop band frequency:');

[N,wn]=cheb2ord(wp/pi,ws/pi,rp,rs);

[b,a]=cheby2(N,rp,wn);

freqz(b,a);

39

FIGURE:-

SAMPLE INPUT:-

Enter the pass band attenuation:20

Enter the stop band attenuation:70

Enter the pass band frequency:0.3*pi

Enter the stop band frequency:0.4*pi

(ii) CHEBYSHEV (TYPE-2) HIGH PASS FILTER

MATLAB CODE:-

clc;

clear all;

close all;

rp=input ('Enter the pass band attenuation:');

rs=input ('Enter the stop band attenuation:');

wp=input ('Enter the pass band frequency:');

ws=input ('Enter the stop band frequency:');

[N,wn]=cheb2ord(wp/pi,ws/pi,rp,rs);

[b,a]=cheby2(N,rp,wn,'high');

freqz(b,a)

40

FIGURE:-

SAMPLE INPUT:-

Enter the pass band attenuation:20

Enter the stop band attenuation:70

Enter the pass band frequency:0.4*pi

Enter the stop band frequency:0.3*pi

(iii) CHEBYSHEV (TYPE-2) BAND PASS FILTER

MATLAB CODE:-

clc;

clear all;

close all;

rp=input ('Enter the pass band attenuation:');

rs=input ('Enter the stop band attenuation:');

wp=input ('Enter the pass band frequency:');

ws=input ('Enter the stop band frequency:');

[N,wn]=cheb2ord(wp/pi,ws/pi,rp,rs);

[b,a]=cheby2(N,rp,wn);

freqz(b,a);

41

FIGURE:-

SAMPLE INPUT:-

Enter the pass band attenuation:2

Enter the stop band attenuation:20

Enter the pass band frequency:[0.3*pi,0.4*pi]

Enter the stop band frequency:[0.1*pi,0.5*pi]

(iv) CHEBYSHEV (TYPE-2) BAND STOP FILTER

MATLAB CODE:-

clc;

clear all;

close all;

rp=input('Enter the pass band attenuation:');

rs=input('Enter the stop band attenuation:');

wp=input('Enter the pass band frequency:');

ws=input('Enter the stop band frequency:');

[N,wn]=cheb2ord (wp/pi,ws/pi,rp,rs);

[b,a]=cheby2(N,rp,wn,'stop');

freqz(b,a);

42

FIGURE:-

SAMPLE INPUT:-

Enter the pass band attenuation:2

Enter the stop band attenuation:20

Enter the pass band frequency:[0.1*pi,0.5*pi]

Enter the stop band frequency:[0.3*pi,0.4*pi]

 RESULTS: - Thus the Amplitude response and phase response of Butterworth and chebyshev type

1 and type 2 filters were verified.

43

INTRODUCTION TO THE TMS

320C6713

44

45

FUNCTIONAL OVERVIEW OF THE TMS 320C6713 DSK

46

CODE COMPOSER STUDIO

The Code Composer Studio (CCS) provides an integrated development environment (IDE)

to incorporate the software tools. CCS includes tools for code generation, such as a C compiler, an

assembler, and a linker. It has graphical capabilities and supports real-time debugging. It provides

an easy-to-use software tool to build and debug programs.

The C compiler compiles a C source program with extension .c to produce an assembly

source file with extension.asm. The assembler assembles an.asm source file to produce a machine

language object file with extension.obj. The linker combines object files and object libraries as

input to produce an executable file with extension.out. This executable file represents a linked

common object file format (COFF), popular in Unix-based systems and adopted by several makers

of digital signal processors. This executable file can be loaded and run directly on the C6713

processor.

To create an application project, one can “add” the appropriate files to the project.

Compiler/linker options can readily be specified. A number of debugging features are available,

including setting breakpoints and watching variables, viewing memory, registers, and mixed C and

assembly code, graphing results, and monitoring execution time. One can step through a program in

different ways (step into, or over, or out).

Real-time analysis can be performed using real-time data exchange (RTDX) associated with

DSP/BIOS .RTDX allows for data exchange between the host and the target and analysis in real

time without stopping the target. Key statistics and performance can be monitored in real time.

Through the Joint Team Action Group (JTAG), communication with on-chip emulation support

occurs to control and monitor program execution. The C6713 DSK board includes a JTAG emulator

interface.

47

GENERATION OF SINE WAVE AND STANDARD TEST SIGNALS.

Experiment No. 8

AIM: To generate a Sine waveform.

48

49

50

51

52

53

54

CONVOLUTION : LINEAR AND CIRCULAR

Experiment No. 09

AIM: To find linear and circular convolution

55

56

57

58

59

60

61

REAL TIME FIR FILTER IMPLEMENTATION (LOW-PASS, HIGH-PASS AND

BAND-PASS) BY INPUTTING A SIGNAL FROM THE SIGNAL GENERATOR

Experment No. 10

AIM: To implement FIR filter.

PROCEDURE:-

Connect Signal Generator in "Line in"

Connect CRO in "Line out"

Switch on DSK

Debug  connect

Create new project and give name as "FIR.pjt"

Select File  New  DSP/BIOS Configuration  "dsk6713.cdb"

and save it as "xyz.cdb"

Add "xyz.cdb" to current project.

Project  Add files to Project  xyz.cdb

Automatically three files are added in the generated file folder

xyzcfg.cmd

xyzcfg.562

xyzcfg_c.c

Open File  New  Source file

Type the code in editor window. Save file in project folder (eg. Coder.c)

Project  Add files to project  Coder.c

Add the library file "dsk 6713bsl.lib" to current project.

Path  C:\ccstudio_v3.1\c6000\dsk6713\lib\dsk6713bsl.lib

Copy header files "dsk 6713.h" and dsk6713_aic 23.h"

from and paste it in current project folder

C:\ccstudio_v3.1\c6000\dsk6713\include

Add the header file generated within xyzcfg_c.c to FIR.c

Compile

Build

Load Program (coder.out)

Debug  Run

CODE:

#include"xyzcfg.h"

#include"C:\ccstudio_v3.1\c6000\dsk6713\include\dsk6713.h"

#include "C:\ccstudio_v3.1\c6000\dsk 6713\include\dsk 6713_aic 23.h"

float filter_coeff[] = {-0.0001,-0.0003, -0.0004,0,0.0009,0.0019,0.0018,-0,-0.0034,-

0.0064,-0.0059,0,0.0096,0.0171,0.0152,-0,-0.0238,-0.0426,-0.0387,0,0.0711,0.1554,

0.2237,0.25, 0.2237,0.1554,0.0711,0,-0.0387,-0.0426,-0.0238,-0,0.0152,0.0101,

62

0.0096, 0, -0.0059, -0.0064, -0.0034, -0, 0.0018, 0.0019, 0.009, 0, -0.004, -0.0003, -

0.0001, -0, 0};

static short in_buffer[100];

DSK 6713_AIC23_Configconfig=

{

\0x0017, /*0DSK6713_AIC 23_LEFTINVOL Left line input channel volume*/

\0x0017, /*1DSK6713_AIC 23_RIGHTINVOL Right line input channel volume*/

\0x00d8, /*2DSK6713_AIC 23_LEFTHPVOL Left channel headphone volume*/

\0x00d8, /*3DSK6713_AIC 23_RIGHTHPVOL Right channel headphone volume*/

\0x0011, /*4DSK6713_AIC 23_ANAPATH Analog audio path control*/

\0x0000, /*5DSK6713_AIC 23_DIGPATH Digital audio path control*/

\0x0000, /*6DSK6713_AIC 23_POWER DOWN Power down control*/

\0x0043, /*7DSK6713_AIC 23_DIGIF Digital audio interface format*/

\0x0081, /*8DSK6713_AIC 23_SAMPLERATE Sample rate control*/

\0x0001, /*9DSK6713_AIC 23_DIGACT Digital Interface Activator*/

\};

/*main()-main code routine, initialize BSL*/

void main()

{

DSK6713_AIC23_CodecHandlehCodec;

Uint32 l_input,r_input,l_output,r_output;

/* Initialize the board support library, must be called first*/

DSK6713_init();

/*start the codec*/

hCodec= DSK6713_AIC23_opencodec(0,&config);

DSK6713_AIC23_setFreq(hCodec,1);

While(1)

{/*read a sample to the left channel*/

while(!DSK6713_AIC23_read(hCodec, &l_input));

/*read a sample to the right channel*/

while(!DSK6713_AIC23_read(hcodec,&r_input));

l_output= (Int16)FIR_FILTER(&filter_coeff,l_input);

r_output=(Int16)FIR_FILTER(&filter_coeff,r_input);

/*send a sample to the left channel*/

while(!DSK6713_AIC23_write(hCodec, l_output));

/*send a sample to the right channel*/

while(!DSK6713_AIC23_write(hcodec, r_output));

}

/*close the codec*/

DSK6713_AIC23_close codec(hcodec);

}

signed int FIR_FILTER(float*h,signedintx)

{

int i=0;

Signed long output=0;

in_buffer[0]=x; /*new input at buffer[0]*/

63

Observation

for(i=51; i>0; i--)

in_buffer[i]=in_buffer[i-1]; /*shuffle the buffer*/

for(i=0;i<51;i++)

output=output+h[i]*in_buffer[i];

return(output);

}

The connection from DSK board to the PC, signal generator and DSO is physically

established. The frequency of the function generator is varied and the output signal

are observed on the DSO. The attenuation caused by the filter is observed for

different frequencies.

RESULT: Implemented FIR filter using code composer studio

64

REAL TIME IIR FILTER IMPLEMENTATION (LOW-PASS, HIGH-PASS AND

BAND-PASS) BY INPUTTING A SIGNAL FROM THE SIGNAL GENERATOR

Experment No. 11

AIM: To implement IIR filter.

PROCEDURE:-

Connect Signal Generator in "Line in"

Connect CRO in "Line out"

Switch on DSK

Debug  connect

Create new project and give name as "IIR.pjt"

Select File  New  DSP/BIOS Configuration  "dsk6713.cdb"

and save it as "xyz.cdb"

Add "xyz.cdb" to current project.

Project  Add files to Project  xyz.cdb

Automatically three files are added in the generated file folder

xyzcfg.cmd

xyzcfg.562

xyzcfg_c.c

Open File  New  Source file

Type the code in editor window. Save file in project folder (eg. Coder.c)

Project  Add files to project  Coder.c

Add the library file "dsk 6713bsl.lib" to current project.

Path  C:\ccstudio_v3.1\c6000\dsk6713\lib\dsk6713bsl.lib

Copy header files "dsk 6713.h" and dsk6713_aic 23.h"

from and paste it in current project folder

C:\ccstudio_v3.1\c6000\dsk6713\include

Add the header file generated within xyzcfg_c.c to FIR.c

Compile

Build

Load Program (coder.out)

Debug  Run

CODE:

#include"xyzcfg.h"

#include"C:\ccstudio_v3.1\c6000\dsk6713\include\dsk6713.h"

#include "C:\ccstudio_v3.1\c6000\dsk 6713\include\dsk 6713_aic 23.h"

const signed int filter_coeff[] = {//12730,-12730,12730,2767,-18324,21137

/*HP2500*/

//312,312,312,32767,-27943,24367 /*LP800*/

65

/*LP2500*/

/*HP4000*/

/*codec configuration settings*/

DSK 6713_AIC23_Configconfig=

{

//1455,1455,1455,32767,-23140,21735

//9268,-9268,9268,32767,-7395,18367

//7215,-7215,32767,5039,6171, /*HP7000*/};

\0x0017, /*0DSK6713_AIC 23_LEFTINVOL Left line input channel volume*/

\0x0017, /*1DSK6713_AIC 23_RIGHTINVOL Right line input channel volume*/

\0x00d8, /*2DSK6713_AIC 23_LEFTHPVOL Left channel headphone volume*/

\0x00d8, /*3DSK6713_AIC 23_RIGHTHPVOL Right channel headphone volume*/

\0x0011, /*4DSK6713_AIC 23_ANAPATH Analog audio path control*/

\0x0000, /*5DSK6713_AIC 23_DIGPATH Digital audio path control*/

\0x0000, /*6DSK6713_AIC 23_POWER DOWN Power down control*/

\0x0043, /*7DSK6713_AIC 23_DIGIF Digital audio interface format*/

\0x0081, /*8DSK6713_AIC 23_SAMPLERATE Sample rate control*/

\0x0001, /*9DSK6713_AIC 23_DIGACT Digital Interface Activator*/

\};

/*main()-main code routine, initialize BSL and generate tone*/

void main()

{

DSK6713_AIC23_CodecHandlehCodec;

int l_input,r_input,l_output,r_output;

/* Initialize the board support library, must be called first*/

DSK6713_init();

/*start the codec*/

hCodec= DSK6713_AIC23_opencodec(0,&config);

DSK6713_AIC23_setFreq(hCodec,3);

While(1)

{/*read a sample to the left channel*/

while(!DSK6713_AIC23_read(hCodec, &l_input));

/*read a sample to the right channel*/

while(!DSK6713_AIC23_read(hcodec,&r_input));

l_output= IIR_FILTER(&filter_coeff,l_input);

r_output=IIR_FILTER(&filter_coeff,r_input);

/*send a sample to the left channel*/

while(!DSK6713_AIC23_write(hCodec, l_output));

/*send a sample to the right channel*/

while(!DSK6713_AIC23_write(hcodec, r_output));

}/*close the codec*/

DSK6713_AIC23_close codec(hcodec);

}

//Implementation of IIR filter

signed int IIR_FILTER(const signed int*h,signedintx1)

{

66

static signed int x[6]={0,0,0,0,0,0}; /*x(n),x(n-1),x(n-2) must be states*/

static signed int y[6]={0,0,0,0,0,0}; /*y(n),y(n-1),y(n-2) must be states*/

int temp=0

temp=(short int)x1; /*copy input to temp*/

x[0]=(signed int)temp; /*copy input to x[stages][0]*/

temp=((int)h[0]*x[0]); /*B0*x(n)*/

temp+=((int)h[1]*x[1]);/*B1/2*x(n-1)*/

temp+=((int)h[1]*x[1]);/*B1/2*x(n-1)*/

temp+=((int)h[2]*x[2]); /*B2*x(n-2)*/

temp-=((int)h[4]*y[1]);/*A1/2*y(n-1)*/

temp-=((int)h[4]*y[1]);/*A1/2*y(n-2)*/

temp-=((int)h[5]*y[2]);/*A2*y(n-2)*/

/*divide temp by coefficient [A0]*/

temp>>=15;

if(temp>32767)

{

temp=32767;

}

else if (temp<-32767)

{

temp=-32767;

}

y[0]=temp;

/*shuffle values along one place for next time*/

y[2]=y[1];/*y(n-2)=y(n-1)*/

y[1]=y[0];/*y(n-1)=y(n)*/

x[2]=x[1];/*x(n-2)=x(n-1)*/

x[1]=x[0];/*x(n-1)=x(n)*/

/*temp is used as input next time through*/

return(temp<<2);

}

Observation
The connection from DSK board to the PC, signal generator and DSO is physically

established. The frequency of the function generator is varied and the output signal

are observed on the DSO. The attenuation caused by the filter is observed for

different frequencies.

RESULT: Implemented IIR filter using code composer studio

67

SAMPLING OF ANALOG SIGNAL AND STUDY OF ALIASING.

Experiment No. 12

AIM: To analyze the sampling of analog signal and study of aliasing.

PROCEDURE:-

Open MATLAB

Open new M-file

Type the program

Save in current directory

Compile and Run the program

For the output see command window\ Figure window

ALGORITHM:-

Get the amplitude and frequency of the signal
Use „sin‟ matlab built in functions

Using „plot‟ function plot the signal

MATLAB CODE:-

clc;
t=-10:.01:10;

T=4;

fm=1/T;

x=cos(2*pi*fm*t);

fs1=1.6*fm;

fs2=2*fm;

fs3=8*fm;

n1=-4:1:4;
xn1=cos(2*pi*n1*fm/fs1);

subplot(331);

plot(t,x);

xlabel('time in sec');

ylabel('x(t)');

title('continous time signal');

subplot(332);

stem(n1,xn1);

hold on;

subplot(332);

plot(n1,xn1);

xlabel('n');

ylabel('x(n)');

title('discrete signal with fs<fm');

n2=-5:1:5;

xn2=cos(2*pi*n2*fm/fs2);

subplot(333);

stem(n2,xn2);

68

hold on;

subplot(333);

plot(n2,xn2);

xlabel('n');

ylabel('x(n)');
title('discrete signal with fs=fm');

n3=-20:1:20;

xn3=cos(2*pi*n3*fm/fs3);

subplot(334);

stem(n3,xn3);

hold on;

subplot(334);

plot(n3,xn3);

xlabel('n');

ylabel('x(n)');

title('discrete signal with fs>fm');

FIGURE:

RESULTS: - Thus the program to find the concept of Aliasing is written using MATLAB and

verified.

69

VIVA QUESTIONS AND ANSWERS

1. What is MATLAB?

MATLAB(matrix laboratory) is a high-performance language for technical computing. It

integrates computation, visualization, and programming in an easy-to-use environment

where problems and solutions are expressed in familiar mathematical notation. Typical uses

include: Data analysis, exploration, and visualization.

2. What are the applications of MATLAB?

 Math and computation

 Algorithm development

 Modeling, simulation, and prototyping

 Data analysis, exploration, and visualization

 Scientific and engineering graphics

 Application development, including Graphical User Interface building

3. State sampling theorem.

Signals Sampling Theorem. Statement: A continuous time signal can be represented in its

samples and can be recovered back when sampling frequency fs is greater than or equal to

the twice the highest frequency component of message signal.

4. What is meant by Nyquist rate and Nyquist criteria?

The Nyquist frequency should not be confused with the Nyquist rate, which is the

minimum sampling ratethat satisfies the Nyquist sampling criterion for a given signal or

family of signals. The Nyquist rate is twice the maximum component frequency of the

function being sampled.

5. Explain scaling and superposition properties of a system.

OR

6. What is meant by linearity of a system and how it is related to scaling and superposition?

The scaling property of linear systems states that scaling the input of a linear system

(multiplying it by a constant gain factor) scales the output by the same factor.

The superposition property of linear systems states that the response of a linear system to a

sum of signals is the sum of the responses to each individual input signal. Another view is

that the individual signals which have been summed at the input are processed

independently inside the filter--they superimpose and do not interact. (The addition of two

signals, sample by sample, is like converting stereo to mono by mixing the two channels

together equally.)

https://ccrma.stanford.edu/~jos/filters/Linear_Time_Invariant_Digital_Filters.html

70

7. What is impulse function?

OR

8. What is meant by impulse response?

In science and mathematics, the Dirac delta function, or δ function, is a

generalized function, or distribution that was historically introduced by the physicist Paul

Dirac for modelling the density of an idealized point mass or point charge, as a function that

is equal to zero everywhere except for zero

9. What is energy signal? How to calculate energy of a signal?

Energy signals have values only in the limited time duration, a signal having only one

square pulse isenergy signal, A signal that decays exponentially has finite energy, so, it is

also an energy signal, The power of an energy signal is zero, because of dividing

finite energy by infinite time.

10. What is power signal? How to calculate power of a signal?

Those signals which have infinite energy and finite power known as power signal.

11. Differentiate between even and odd signals.

Even Signal:

A signal is referred to as an even if it is identical to its time-reversed counterparts;

x(t) = x(-t).

Odd Signal:

A signal is odd if x(t) = -x(-t).

An odd signal must be 0 at t=0, in other words, odd signal passes the origin.

12. Explain time invariance property of a system.

A time-invariant (TIV) system has a time-dependent system function that is not a direct

function of time. In the language of signal processing, this property can be satisfied if the

transfer function of the system is not a direct function of time except as expressed by the

input and output.

13. What is memory less system?

The output signal at each time depends only on the input at that time. Such systems are said

to be memoryless because you do not have to remember previous values (or future values,

for that matter) of the input in order to determine the current value of the output.

14. When a system is said to have memory?

The output signal at each time depends on the previous output. Such systems are said to

be memory because you have to remember previous values (or future values, for that

matter) of the input in order to determine the current value of the output.

71

15. What is meant by causality?

A causal system (also known as a physical or nonanticipativesystem) is a system where the

output depends on past and current inputs but not future inputs

16. Explain linear convolution and circular convolution.

Linear convolution is the basic operation to calculate the output for any linear time

invariant system given its input and its impulse response. Circular convolution is the same

thing but considering that the support of the signal is periodic (as in a circle, hance the

name).

17. What is the length of linear and circular convolutions if the two sequences are having the

length n1 and n2?

Linear Convolution N= n1 + n2 -1

Circular Convolution N= max(n1,n2)

18. What are Fourier series and Fourier transform?

The Fourier series is used to represent a periodic function by a discrete sum of complex

exponentials, while the Fourier transform is then used to represent a general, nonperiodic

function by a continuous superposition or integral of complex exponentials.

19. What are the advantages and special applications of Fourier transform, Fourier series, Z

transform and Laplace transform?

The Laplace and Fourier transforms are continuous (integral) transforms of continuous

functions.

The Laplace transform maps a function f(t)f(t) to a function F(s)F(s) of the complex

variable s, where s=σ+jωs=σ+jω.

Since the derivative f˙(t)=df(t)dtf˙(t)=df(t)dt maps to sF(s)sF(s), the Laplace transform of a

linear differential equation is an algebraic equation. Thus, the Laplace transform is useful

for, among other things, solving linear differential equations.

If we set the real part of the complex variable s to zero, σ=0σ=0, the result is the Fourier

transform F(jω)F(jω) which is essentially the frequency domain

representation of f(t)f(t) (note that this is true only if for that value of σσ the formula to

obtain the Laplace transform of f(t)f(t) exists, i.e., it does not go to infinity).

The Z transform is essentially a discrete version of the Laplace transform and, thus, can be

useful in solving difference equations, the discrete version of differentialequations. The Z

transform maps a sequence f[n]f[n] to a continuous function F(z)F(z) of the complex

variable z=rejΩz=rejΩ.

72

If we set the magnitude of z to unity, r=1r=1, the result is the Discrete Time Fourier

Transform (DTFT) F(jΩ)F(jΩ) which is essentially the frequency domain representation

of f[n]f[n].

20. Differentiate between DTFT and DFT. Why it is advantageous to use DFT in computers rather

than DTFT?

In DTFT, frequency appears to be continuous. But, in DFT, frequency is discrete. This

property is useful for computation in computers.

21. How to perform linear convolution using circular convolution?

If two signals x (n) and y (n) are of length n1 and n2, then the linear convoluted output z (n)

is of length n1+n2-1. Each of the input signals is padded with zeros to make it of length

n1+n2-1. Then circular convolution is done on zero padded sequences to get the linear

convolution of original input sequences x (n) and y (n).

22. What is meant by correlation?

Correlation is the measure of similarity between two signal/waveforms. It compares the

waveforms at different time instants.

23. What is auto-correlation?

It is a measure of similarity of similarity of a signal/waveform with itself.

24. What is cross-correlation?

In signal processing, cross-correlation is a measure of similarity of two series as a function

of the displacement of one relative to the other. This is also known as a sliding dot product

or sliding inner-product. It is commonly used for searching a long signal for a shorter,

known feature.

25. What are the advantages of using autocorrelation and cross correlation properties in signal

processing fields?

In wireless communications we use cross correlation between a known preamble sequence

and the received signal to detect the start of a transmission. It's also useful to look at the

autocorrelation of the sequence when selecting/designing it. If it has a “peaked”

autocorrelation, I.e. one large value and all the rest small, then it is a good sequence to use

for transmission preamble because it produces a distinct peak in your detector.

26. How auto-correlation can be used to detect the presence of noise?

The auto-correlation function can be used to detect repeats or periodicity in a signal. Here,

we use the auto-correlation to assess the effect of fluctuations (noise) on a periodic signal.

In absence of noise, the auto-correlation function oscillates with a constant amplitude and a

maximum of 1. The period of the auto-correlation correspond to the period of the signal. In

presence of noise, the envelop of the auto-correlation function decreases exponentially.

73

More important is the noise, faster is this decreasing. Use of the auto-correlation function to

quantify the effect of noise on a periodic signal This phenomenon is also called "phase

diffusion"

27. Differentiate between IIR filters and FIR filters.

Advantages

FIR IIR

 Stable

 Highly precise

 Finite duration impulse response

 Excellent phase response

 The word-size effect such as round-

off noise and coefficient

quantization errors are much less

severe in FIR.

 cost lesser

 Faster computations

 Less hardware, computations

 Easier to design

 Lower order required

Disadvantages

FIR IIR

 Require higher order

 Increased hardware

 More computations
 Larger input and

output delays

 Cost more

 Sensitive to data

round off and cutoff

 Make become

unstable

 Poor phase response

28. What is the procedure to design a digital Butterworth filter?

Design Steps of Butterworth Filter

1. Convert the filter specifications to their equivalents in the lowpass prototype frequency. .

2. From Ap determine the ripple factor

3. From As determine the filter order, N.

4. Determine the left-hand poles, using the equations given.

5. Construct the lowpass prototype filter transfer function.

6. Use the frequency transformation to convert the LP prototype filter to the given

specifications.

29. What is the difference between Butterworth, Chebyshev I and Chebyshev II filters?

Magnitude response vs frequency curve: The magnitude response |H(jw)| of

the butterworth filter decreases with increase in frequency from 0 to infinity, while the

74

Raw
Data

Refined
Data

Processor Collector

magnitude response of the Chebyshev filter fluctuates or show ripples in the passband and

stopband depending on the type of the filter.

Width of Transition band: The width of the transition band is more in Butterworth filter

compared to the Chebyshev filter.

Location of the poles: The poles of a Butterworth filter lies only on a circle while that of

the Chebyshev filter lies on an ellipse, which can be easily concluded on looking at the

poles formula for both types of filters.

No. Of Components required for implementing the filter: The number of poles

in Butterworth filter is more compared to that of the Chebyshev filter of same specifications,

this means that the order of Butterworth filter is more than that of a Chebyshev filter. This

fact can be used for practical implementation, since the number of components required to

construct a filter of same specification can be reduced significantly.

30. What are difference equations and differential equations?

In the one-dimensional case, difference equations are the discrete-time analogue of

differential equations. The same basic relationship holds in higher dimensions, but it's not

quite so easy to state. Differential equation involves derivatives of function. Difference

equation involves difference of terms in a sequence of numbers.

31. What is non real time processing?

Signal

32. What is meant by real time processing?

 Ability to collect, analyze, and modify signals in real-time

 Real-Time: As these signals are occurring

 We can analyze and process signals while collecting them, not at a later time.

Signal

33. What is a Digital Signal Processor (DSP)?

Microprocessor specifically designed to perform fast DSP operations (e.g., Fast Fourier

Transforms, inner products, Multiply & Accumulate)

 Good at arithmetic operations (multiplication/division)

Refined
Data

Real-Time
Signal

Processor

75

 Mostly programmed with Assembly and C through Integrated Development

Environment (IDE)

34. Differentiate between RISC and CISC architectures.

RISC

Emphasis

on

software

Emphasis

on

hardware

Single-

clock,

reduced

instruction

only

Includes

multi-clock

complex

instructions

large

code

size

Small

code

sizes

Better C

compilers

Poor C

compilers

CISC

35. Differentiate between General purpose MPU(Micro Processor Unit) and DSP Processor

MPU are built for a range of general-purpose functions such as:

Data manipulation

Math calculations

Control systems

They run large blocks of software

They are used in real-time and in unreal-time systems

DSPs are single-minded, dedicated to:

Perform mathematical calculations

Small blocks of software

Have a predictable execution time

Real-time only

Could assist a general-purpose host MPU

Microprocessor
General purpose
Fixed internal format
Single memory access

General addressing mode

Very large external memory

DSP

Arithmetic
Varying internal format

Multiple memory access

Special addressing mode

Very large internal memory

76

36. What is pipelining?

PPiippeelliinnee

SSttaaggee
DDeessccrriippttiioonn

PPFF
GGeenneerraattee pprrooggrraamm ffeettcchh aaddddrreessss

RReeaadd ooppccooddee

DD RRoouuttee ooppccooddee ttoo ffuunnccttiioonnaall uunniitt

DDeeccooddee iinnssttrruuccttiioonn

EE EExxeeccuuttee iinnssttrruuccttiioonn

37. What is parallel processing?

A mode of operation in which a process is split into parts, which are executed

simultaneously on different processors attached to the same computer.

38. What is MAC?

The multiply–accumulate operation is a common step that computes the product of two

numbers and adds that product to an accumulator.

39. What is barrel shifter?

A barrel shifter is a digital circuit that can shift a data word by a specified number

of bits without the use of any sequential logic, only pure combinatorial logic.

40. Differentiate between floating point DSP and fixed point DSP.

Fixed Point/Floating Point

 fixed point processor are :

i. cheaper

ii. smaller

iii. less power consuming

iv. Harder to program

1. Watch for errors: truncation, overflow, rounding

v. Limited dynamic range

vi. Used in 95% of consumer products

 floating point processors

i. have larger accuracy

ii. are much easier to program

iii. can access larger memory

iv. It is harder to create an efficient program in C on a fixed point processors

than on floating point processors

https://en.wikipedia.org/wiki/Digital_circuit
https://en.wikipedia.org/wiki/Bit_shift
https://en.wikipedia.org/wiki/Word_(data_type)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Combinatorial_logic

77

Floating Point Fixed Point

Applications

• Modems

• Digital Subscriber Line (DSL)

• Wireless Base stations

• Digital Imaging

• 3D Graphics

• Speech Recognition

• Voice over IP

41. What is code composer studio?

Applications

• Portable Products

• 2G, 2.5G and 3G Cell Phones

• Digital Audio Players

• Digital Still Cameras

• Voice Recognition

• Headsets

• Fingerprint Recognition

Code Composer Studio (CCStudio or CCS) is an integrated development

environment (IDE) to develop applications for Texas Instruments (TI) embedded processors.

42. Explain Von-Neumann and Harvard architectures

 Von Neumann Architecture : Single memory shared by both the program

instructions and data

 Harvard Architecture : Two separate memories, a program memory (PM) for

instructions, and a data memory (DM) for data

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Texas_Instruments

78

43. What are Line-in, Line-out, Mic-in, Mic-out?

Line in will usually be stereo and about 10Kohm impedance.

Mic in is mono and about 600-1Kohm impedance and expecting SIGNIFICANTLY lower

levels than the line, as it has a preamp to pick up the very low levels present in a

microphone.

Microphone level is in the region of -60 dBV (0.001 volt) to -40 dBV (0.010 volt).

A mic-level or microphone-level signal is the voltage level that comes out of a

microphone when someone speaks into it, typically just a few ten-thousandths of a volt. Of

course, this voltage varies in response to changes in voice level and and in the talker-to-

mic distance. But the signal is still quite small.

Line level is in the region of 0 dBV (1.000 volt).

A line-level signal is approximately one volt, or about 1,000 times greater than a mic-level

signal. Connecting a microphone to a line-level input will result in almost no sound at all

because the mic signal is so faint that the line input cannot hear it.

44. Define discrete time and digital signal.

Discrete time signal is continuous in amplitude and discrete in time, where Digital signal is

discrete in time and amplitude.

45. Explain briefly, the various methods of representing discrete time signal

Graphical, Tabular, Sequence, Functional representation

46. Define sampling and aliasing.

Converting a continuous time signal into discrete time signal is called as Sampling, Aliasing

is an effect that causes different signals to become indistinguishable.

47. What is Nyquist rate?

Its the sampling frequency which is equal to twice of Continuous time signal which has to

be sampled.

48. State sampling theorem.

It states that , To reconstruct the continuous time signal from its Discrete time signal, The

sampling frequency should be more than twice of continuous time signal frequency.

49. Express the discrete time signal x(n) as a summation of impulses.

50. How will you classify the discrete time signals?

Causal and Non causal, Periodic and non periodic, even and odd, energy and power signals

79

51. When a discrete time signal is called periodic?

If some set of samples repeats after a regular interval of time then its called as periodic.

52. What is discrete time system?

If a system's excitation and responses are both discrete time signals then its called as discrete

time system.

53. What is impulse response? Explain its significance.

The response of a system when the excitation is Impulse signal is called as impulse

response. it also called as Natural response, free forced response.

54. Write the expression for discrete convolution.

55. Classifying discrete time systems.

Causal, Non causal, time variant, time invariant, Linear, non linear, stable and unstable

system.

56. Define time invariant system.

If a system's operation is independent of time then its time invariant, i.e delayed system

response is equal to system's response for delayed input.

57. What is linear and nonlinear systems?

If a system satisfies homogeneity principle and superposition principle then it is Linear. if

not Non linear.

58. What is the importance of causality?

causality states that system's response should depend on present and past inputs only not on

the future inputs. so causal systems are realizable.

59. What is BIBO stability? What is the condition to be satisfied for stability?

If a system's response is Bounded for Bounded excitation then its BIBO stable.

For stable system the impulse response should be absolutely sum able .

60. What are FIR and IIR systems?

FIR: system's impulse response contains finite no. of samples

IIR: system's impulse response contains infinite no. of samples

61. What are recursive and non recursive systems? give examples?

A Recursive system is one in which the output depend on it,s one or more past outputs while

a non recursive is one in which output is independent of output.

Ex: any system with feedback is Recursive , without feedback is non recursive.

62. Write the properties of linear convolution.

1) x(n)*y(n)= y(n)*x(n)

80

21

2) [x(n)+y(n)]*z(n)=x(n)*z(n)+y(n)*z(n)

3) [x(n)*y(n)]*z(n) =x(n)*[y(n)*z(n)]

63. Define circular convolution.

Circular convolution is same as linear convolution but circular is for periodic signals.

64. What is the importance of linear and circular convolution in signals and systems?

Convolution is used to calculate a LTI system's response for given excitation.

65. How will you perform linear convolution via circular convolution?

Circular convolution with the length of linear convolution length (l+m-1) results linear

convolution.

66. What is sectioned convolution? Why is it performed?

If any one of the given two sequences length is very high then we have to go for sectioned

convolution.

67. What are the two methods of sectioned convolution?

1) Over lap-Add method. 2) Over lap save method.

68. Define cross correlation and auto-correlation?

Auto correlation is a measure of similarity between signals and its delayed version as a

function of time delay.

Cross correlation is a measure of similarity between two signals as a function of time delay

between them.

69. What are the properties of Coorelation?

1) R12(T)≠R21(T)

2) R12(T)=R
*
(-T)

3) if R12(T)=0, both signals are orthogonal to each other

4) Fourier transform of auto correlation gives energy spectral density.

DFT & FFT

70. Define DFT of a discrete time sequence?

71. Define inverse DFT.

72. What is the relation between DTFT and DFT?

81

73. What is the drawback in Fourier transform and how is it overcome?

Fourier transform is that it is not truly realizable in practice but we can get closer, it is not

applicable to all signals, so we go for Laplace in continuous , Z in discrete.

74. List any four properties of DFT

linearity Property : ax1(n)+bx2(n)→aX1(ω)+bX2(ω)

Duality Property: X(N)⟷Nx[((−k))N]

Complex conjugate property: x∗(n)⟷X∗((K))N=X∗(N−K)

Circular shift property: x(n)exp(j2ΠKn/N)⟷X((K−L)

75. What is FFT, What it's importance?

FFT stands for Fast Fourier Transform, this is same as DFT but algorithm is different by

FFT with in lees time we can compute Fourier transform compared to DFT.

76. Compare FFT and DFT?

DFT and FFT both are used to represent a discrete time signal in frequency domain, But

DFT procedure is formula based where FFT is algorithm based, FFT is more efficient and

faster than DFT, i.e if a sequence contains N samples then to calculate DFT no. of

multiplications and additions required are: N
2
 , N(N-1) FFT no. of multiplications and

additions required are : (N/2) log2(N), N log2(N)

77. What are the various algorithms to calculate FFT?

Decimation In Time (DIT), Decimation In frequency (DIF)

78. Draw the DIT FFT structure with the length of 8?

82

8 , 8 , 8 8

79. Draw the DIF FFT structure with the length of 8?

80. What is phase factor or twiddle factor?

It is defined as WN = e
-j2π/N

81. What are the phase factors involved in all stages of computation in the 8-point DIT radix-2

FFT?

First stage: W8
0

Second stage: W
0
 W

2

8 , 8

Third stage: W
0
 W

1
 W

2
, W

3

82. Draw the basic butterfly diagram or flow graph of DIT radix-2 FFT?

83. Draw the basic butterfly diagram or flow graph of DIF radix-2 FFT?

84. What are the phase factors involved in all stages of computation in 8-point DIF radix-2

FFT?
First stage: W

0
 W

1
 W

2
, W

3

8 , 8 , 8 8

Second stage: W
0
 W

2

8 , 8

Third stage: W8
0

85. What is magnitude and phase spectrum?

Magnitude spectrum is the graph between Fourier transform magnitudes and frequency.

Phase spectrum is the graph between Fourier transform phases and frequency.

83

References

[1] M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical Functions. Dover

Publications, New York NY, 1972.

[2] S. Bagchi and S.K. Mitra. Nonuniform Discrete Fourier Transform and Its Signal

Processing Applications. Kluwer, Boston MA, 1998.

[3] M.R. Bateman and B. Liu. An approach to programmable CTD filters using coefficients 0,

+1, and −1. IEEE Trans. on Circuits and Systems, CAS-27:451-456, June 1980.

[4] J. Cioffi. A Multicarrier Primer. ANSI T1E1.4 Committee Contribution, Boca Raton FL,

November 1991.

[5] A.C. Constantinides. Spectral transformations for digital filters. Proc. IEE (London),

117:1585–1590, August 1970.

[6] R.E. Crochiere and A.V. Oppenheim. Analysis of linear digital networks. Proc. IEEE,

62:581–595, April 1975.

[7] L. Gaszi. Explicit formulas for lattice wave digital filters. IEEE Trans. on Circuits &

Systems, CAS-32:68–88, January 1985.

[8] A.H. Gray, Jr. and J. D. Markel. Digital lattice and ladder filter synthesis. IEEE Trans. on

Audio and Electroacoustics, AU-21:491–500, December 1973.

[9] O. Herrmann, L.R. Rabiner, and D.S.K. Chan. Practical design rules for optimum finite

impulse response lowpass digital filters. Bell System Tech. J., 52:769-799, 1973.

[10] L.B. Jackson. On the interaction of roundoff noise and dynamic range in digital filters. Bell

System Technical Journal, 49:159–184, February 1970.

[11] L.B. Jackson. Digital Filters and Signal Processing. Kluwer, Boston MA, third edition,

1996.

[12] P. Jarske, Y. Neuvo, and S.K. Mitra. A simple approach to the design of FIR filters with

variable characteristics. Signal Processing, 14:313–326, 1988.

[13] J.F. Kaiser. Nonrecursive digital filter design using the I0-sinh window function. Proc. 1974

IEEE International Symposium on Circuits and Systems, pages 20-23, San Francisco CA,

April 1974.

[14] T.P. Krauss, L. Shure, and J.N. Little. Signal Processing TOOLBOX for use with

MATLAB. The Mathworks, Inc., Natick MA, 1994.

[15] M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical Functions. Dover

Publications, New York NY, 1972.

[16] S. Bagchi and S.K. Mitra. Nonuniform Discrete Fourier Transform and Its Signal Processing

Applications. Kluwer, Boston MA, 1998.

[17] M.R. Bateman and B. Liu. An approach to programmable CTD filters using coefficients 0,

+1, and −1. IEEE Trans. on Circuits and Systems, CAS-27:451- 456, June 1980.

[18] J. Cioffi. A Multicarrier Primer. ANSI T1E1.4 Committee Contribution, Boca Raton FL,

November 1991.

[19] A.C. Constantinides. Spectral transformations for digital filters. Proc. IEE (London),

117:1585–1590, August 1970.

[20] R.E. Crochiere and A.V. Oppenheim. Analysis of linear digital networks. Proc. IEEE,

62:581–595, April 1975.

84

[21] L. Gaszi. Explicit formulas for lattice wave digital filters. IEEE Trans. on Circuits &

Systems, CAS-32:68–88, January 1985.

[22] A.H. Gray, Jr. and J. D. Markel. Digital lattice and ladder filter synthesis. IEEE Trans. on

Audio and Electroacoustics, AU-21:491–500, December 1973.

[23] O. Herrmann, L.R. Rabiner, and D.S.K. Chan. Practical design rules for optimum finite

impulse response lowpass digital filters. Bell System Tech. J., 52:769-799, 1973.

[24] L.B. Jackson. On the interaction of roundoff noise and dynamic range in digital filters. Bell

System Technical Journal, 49:159–184, February 1970.

[25] L.B. Jackson. Digital Filters and Signal Processing. Kluwer, Boston MA, third edition,

1996.

[26] P. Jarske, Y. Neuvo, and S.K. Mitra. A simple approach to the design of FIR filters with

variable characteristics. Signal Processing, 14:313–326, 1988.

[27] J.F. Kaiser. Nonrecursive digital filter design using the I0-sinh window function. Proc. 1974

IEEE International Symposium on Circuits and Systems, pages 20-23, San Francisco CA,

April 1974.

[28] T.P. Krauss, L. Shure, and J.N. Little. Signal Processing TOOLBOX for use with

MATLAB. The Mathworks, Inc., Natick MA, 1994.

